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ABSTRACT
Industrial two-dimensional (2D) matrix symbols are ubiqui-
tous throughout the automatic assembly lines. Most industri-
al 2D symbols are corrupted by various inevitable artifacts.
State-of-the-art decoding algorithms are not able to directly
handle low-quality symbols irrespective of problematic arti-
facts. Degraded symbols require appropriate preprocessing
methods, such as morphology filtering, median filtering, or
sharpening filtering, according to specific distortion type. In
this paper, we first establish a database including 3000 indus-
trial 2D symbols which are degraded by 6 types of distortion-
s. Second, we utilize a shallow convolutional neural network
(CNN) to identify the distortion type and estimate the quality
grade for 2D symbols. Finally, we recommend an appropriate
preprocessing method for low-quality symbol according to its
distortion type and quality grade. Experimental results in-
dicate that the proposed method outperforms state-of-the-art
methods in terms of PLCC, SRCC and RMSE. It also pro-
motes decoding efficiency at the cost of low extra time spent.

Index Terms— 2D Matrix Symbol, Image Quality As-
sessment, Convolutional Neural Network.

1. INTRODUCTION

2D matrix symbols have been widely applied to automated i-
dentification applications such as semiconductor wafer mark-
ing, industrial components retrospect, and document label-
s [1, 2]. Compared to 1D barcode, 2D matrix symbols have
more attractive advantages, such as large data capacity, com-
pact size, and built-in error checking/correction mechanis-
m [3]. With the development of smartphone, most common
2D matrix symbols in current daily life can be decoded rapid-
ly and accurately. However, how to decode the industrial 2D
matrix symbols quickly and reliably is still a challenging task,
and it has become a critical topic in machine vision commu-
nity. Most industrial symbols suffer from problematic arti-
facts including rough printing surfaces, limited marking tech-
niques, poor lighting conditions, motion blur, scratches and
smears, as shown in Fig.1.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Some low-quality industrial 2D matrix symbols. Observation indicates that:
(a)-(c) are corrupted by severe noise; (d) is degraded by severe motion blur; (e)-(f) are
corrupted by geometric deformations, i.e. grid and axial nonuniformities; (g)-(h) are
degraded by overprint and underprint artifacts respectively.

Motivation: To the best of our knowledge, known de-
coding algorithms such as ZXing [4], Zbar [5], libdmtx [6]
and 2DTG [7] cannot directly decipher degraded symbols ir-
respective of problematic distortions. This requires some pre-
processing methods based upon the specific distortion types
of symbols. Some traditional machine vision-based decod-
ing apparatuses, such as KEYENCE SR-1000 and COGNEX
DataMan, have proposed a few preprocessing techniques suit-
able for industrial symbols [3, 8]. Specifically, for each low-
quality symbol, KEYENCE SR-1000 captures thousands of
sample images from it by adjusting exposure time, optical
gain, and polarization filter, whereafter each sample image is
processed by 7 common image filters including smoothing,
dilation, erosion, opening, closing, median and sharpening
filters. Then each filtered image is passed to decoding step
to judge if the symbol can be deciphered successfully. This
exhaustive search strategy is reliable, but would be necessar-
ily time-consuming. How to quickly and automatically rec-
ommend an appropriate preprocessing method according to
specific distortion type of degraded symbols would be mean-
ingful, and promote throughput of assembly lines. Besides,
for some symbols with very poor quality, decoding appara-
tuses still cannot decipher them successfully, although all pre-
processing methods have been exhaustively tried. Such case
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would be expensive in terms of decoding time.
Related Work: Previous research can be divided into two

categories. On the one hand, international standardization or-
ganization (ISO) disclosed two standards, i.e. ISO-15415 and
ISO-16022 [9, 10], to classify the quality of 2D data matrix
symbols into 5 grades based on some hand-crafted features.
These standards can be regarded as full-reference metrics, be-
cause they require a reference decoding algorithm to decipher
2D symbols in advance. However, these standards result in a
longer quality estimation time. We refer the readers to [9, 10]
for more details. On the other hand, Chen et al. proposed a
no-reference quality measure for the mobile phone captured
2D barcodes in order to reject the symbols with poor qual-
ity [11]. They further improved their work and proposed a
reduced-reference quality metric [12]. However, these met-
rics are limited to only blur and illumination artifacts.

Contribution: Main contribution of this paper includes 3
aspects: 1) We establish a database containing 3000 industri-
al 2D symbols degraded by 6 types of distortions for the first
time; 2) We propose an end-to-end blind quality measure us-
ing a shallow CNN architecture, whereby we can determine
the distortion type and estimate the quality grade for degraded
symbols, and the proposed model is robust to different rota-
tion angles; 3) The proposed method can be applied to two
practical applications for promoting decoding efficiency.

2. PROPOSED METHOD
2.1. Industrial 2D Data Matrix Database
As far as we know, there is still no open database with respec-
t to industrial 2D matrix symbols. Notably, quick response
code (QR code) and Data Matrix code are two of the most
popular 2D matrix symbols. QR code is widely applied for
civil use, while Data Matrix code is more suitable to be print-
ed in industrial components, because Data Matrix possesses
the smaller dimension compared to other formats. Hence, we
select Data Matrix code as research object in this paper.

We select 100 pristine Data Matrix images as reference
group. The reference group is made up of 25 symbols print-
ed on glossy metal surfaces, 25 symbols printed on frosted
metal surfaces, 25 symbols printed on resin surfaces, and 25
computer-generated symbols produced by encoder software
libdmtx [6]. For making sure that the reference group un-
dergos no obvious artifacts, most pristine images are captured
by machine vision-based decoding apparatus KEYENCE SR-
1000 under the optimal illumination conditions.

We choose 6 typical distortions to simulate artifacts dur-
ing the process of symbol marking and symbol imaging
stages, explained blow: 1) We select 5 levels of Speckle
Noise to simulate the artifacts caused by rough printing sur-
faces; 2) We consider 5 levels of Motion Blur to simulate the
artifacts caused by conveyor belts; 3) We consider 5 levels
of overprint [10] and 5 levels of underprint [10] to simulate
the artifacts caused by limited marking techniques; 4) To
simulate grid nonuniformity [9] caused by bad photograph-

ing angles, we degrade symbols by 5 levels of perspective
transformations; 5) We consider 5 levels of axial stretches to
simulate the axial nonuniformity [9]. This way, we derive 30
distorted images for each pristine symbol, and a total of 3000
samples are included in the proposed database1. We further
augment the database in next section to reduce overfitting.

2.2. Data Annotation, Augmentation and Normalization
Annotation: In this paper, we pay attention to two properties
of 2D symbols, i.e. distortion type and quality grade. It’s easy
to discriminate different distortion types, but how to annotate
the quality grades for 2D symbols is debatable. An intuitive
sense is that the quality of 2D symbols includes only two lev-
els, i.e. either decodable, or undecodable. However, in reality,
some symbols degraded by severe artifacts would be decoded
under some “lucky” conditions, such as providential illumi-
nation, photographing angle, and powerful error correction
system. But this case would result in unstable and unsafe ef-
fect because wrongly deciphered results are devastating com-
pared to undecodable. Therefore, we classify the quality of
symbols into 5 discrete grades using the full-reference metric
defined by ISO-15415 and ISO-16022. Specifically, grade-4
means the best quality level, grade-3, 2 and 1 belong to de-
codable symbols which are degraded by different distortion
levels, and all undecodable symbols are annotated by grade-
0. The adopted decoding software is the powerful 2DTG [7].

Augmentation: Data augmentation is necessary to reduce
overfitting. Previous works [13,14] used to divide the training
images into several patches to extent database content. This
method results in 2 defects: 1) The annotation of differen-
t patches within the same image would be different, and this
would introduce training label noise; 2) Convolution compu-
tation of several patches is expensive in terms of inference
time. Thus, we enlarge the database by rotating the 2D sym-
bols with 11 different angles. This method is driven by 2
considerations: 1) Different rotation angles have no obvious
influences on quality labels of 2D symbols. In other word,
rotation is a label-preserving transformation for 2D symbols;
2) This method can promote the robustness of the proposed
model to different rotation angles. This way, we derive 33K
images in total.

Normalization: The normalization step guarantees that
all images of the proposed database have the same resolution
(256 × 256) and the same polarization (i.e. finder pattern of
symbols are dark, while background of symbols are bright).

2.3. The CNN Architecture
Inspired by previous works [14, 15], we decompose the blind
quality prediction problem into two subtasks. Subtask I clas-
sifies an degraded symbol into a specific distortion type from
a set of pre-defined categories, as mentioned in section 2.1.
Subtask II classifies the same symbol into a specific quality

1The proposed database can be downloaded from: https://mega.
nz/#F!Zi4nlTSR!MU-JWzBEoZHxqkFSxJA_Jg
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Fig. 2. Flowchart of the proposed CNN architecture. We follow the style and convention in [15] to represent the parameterization of the convolutional layer as “height×width
| input channel×output channel | stride | padding”, and “fc” means “fully connected layer”. Besides, C1 and C2 denote the total number of categories of the predefined distortion
types and quality grades, respectively.

grade from 5 levels defined by ISO-15415 and ISO-16022 2.
Shared layers: As shown in Fig.2, subtask I and sub-

task II share the first two convolutional layers which contain
8 and 16 kernels respectively, followed by a Rectified Lin-
ear Unit (ReLU) activation function and a 2 × 2 max pool-
ing. This architecture is motivated by two considerations: 1)
shared layers can save computational expense, and 2) learn-
ing multiple correlated tasks at the same time may promote
the performance of the main task [16].

Subtask I: On top of the shared layers, subtask I ap-
pends two convolutional layers including 32 and 64 kernels
respectively, and one fully connected layer containing 1024
neurons. We use h(k) to represent the deep features from
the last fully connected layer, where k means the k-th in-
put image of mini-batch training data set. Then we append
a softmax layer to map h(k) to a C1-dimensional probabili-
ty vector p(k) = [p

(k)
1 ,p

(k)
2 , ...,p

(k)
C1

], in which the maximal
probability indicates the predicted distortion type. Suppose
that W and b represent the weights and biases of the soft-
max layer, we obtain the unnormalized probability vector as
z(k) = WTh(k) + b, where z(k) = [z

(k)
1 , z

(k)
2 , ..., z

(k)
C1

]. Then
we use equation 1 to derive the normalized probability vector.

p
(k)
i =

exp(z
(k)
i )∑C1

j=1 exp(z
(k)
j )

, i ∈ {1, 2, ...,C1}, (1)

For subtask I, we empirically select cross entropy as loss:

l1 = −
K∑

k=1

C1∑
i=1

p
(k)
i logp̄

(k)
i . (2)

where K means the mini-batch size of the training data, which
is set as 100 here. Besides, p̄

(k)
i represents the training label

2Notably, contrast change distortion has not been considered in this paper
due to its heavy complexities. For reducing effect of contrast distortion to
final quality grade of 2D symbol, we omit “symbol contrast” feature defined
by [9, 10] when annotating quality label.

of the i-th distortion type of the k-th input training image.
Subtask II: Notably, we tried to use a similar CNN ar-

chitecture as [15] to share all convolutional layers with two
subtasks, but the performance is unsatisfying. The reason-
s include 2 aspects: 1) each distortion type of the proposed
database is homogeneous across the entire image, and dis-
crepancies between different distortion types are distinct; 2)
quality grade of industrial 2D symbol does not completely
depend on distortion type. In fact, it may be affected by com-
plex factors, such as data modulation ratio decline and finder
pattern damage caused by incidental issues [9]. Moreover,
the discrepancies between a pair of 2D symbols with adjacent
quality grades are not very conspicuous. Therefore, for sub-
task II, we separate the 3rd and 4th convolutional layers with
subtask I, and individually train a sub-network for better pre-
diction accuracy. The output of sub-network II is a softmax
layer, which is responsible for mapping the 1024-dimensional
deep features to a C2-dimensional probability vector q(k) =
[q

(k)
1 , q

(k)
2 , ..., q

(k)
C2

], in which the maximal probability indi-
cates the predicted quality grade. The empirical loss function
used here is cross entropy: l2 = −

∑K
k=1

∑C2

i=1 q
(k)
i logq̄

(k)
i ,

where q̄
(k)
i represents the training label of the i-th quality

grade of the k-th input training image.
Training: Different from traditional multi-task learning

methods which use an overall loss function to optimize pa-
rameters [14–16], the training stage in this paper is divided
into two stages. Considering that subtask I is much easier to
learn, we first feed the augmented training samples to train the
sub-network I by minimizing loss function l1. Second, we use
parameters of the 1st and 2nd convolutional layers obtained
in the first stage to initialize the weights and biases of the
shared layers. Then we further optimize the rest layers of sub-
network II by minimizing loss function l2. Adaptive moment
estimation (Adam) with a fixed learning rate lr = 1 × 10−3

serves as an optimization function to minimize the loss func-
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Table 1. Distortion classification accuracy for each distortion type. All models are
trained and tested on the proposed 2D symbols database. The best performances are
highlighted by red.

S-Noise M-Blur O-Print U-Print GrNu AxNu Overall

AlexNet [17] 0.880 0.873 0.876 0.794 0.814 0.719 0.826

IQA-CNN++ [14] 0.665 0.734 0.703 0.622 0.724 0.580 0.671

MEON [15] 0.933 0.971 0.866 0.789 0.869 0.790 0.869

Proposed 0.958 0.882 0.919 0.813 0.904 0.801 0.880

Table 2. Performance of quality grade estimation task.
PLCC SRCC RMSE Model Size

AlexNet [17] – – – 6000×104

IQA-CNN++ [14] 0.6229 0.6092 1.1158 7.9×104

MEON [15] 0.7518 0.7556 0.8151 10.6×104

SSIM [18] 0.5584 0.5141 1.1535 –
Proposed 0.8206 0.8068 0.7312 16.6×104

tions, because Adam occupies the less CPU/GPU memory re-
source, and achieves a better prediction accuracy compared to
SGD (stochastic gradient descent) in our tasks. Training and
testing codes of the proposed method are available here3.

3. EXPERIMENTAL RESULTS

Distortion Classification: Table 1 shows the distortion clas-
sification accuracy of different methods on the proposed
database, where S-Noise, M-Blur, O-Print, U-print, GrNu and
AxNu represent different distortion types, i.e. Speckle-Noise,
Motion-Blur, Over-Print, Under-Print, Grid-Nonuniformity
and Axial-Nonuniformity, respectively. We perform a 5-
fold cross-validation for fair comparison. In each validation
round, the database is randomly divided into 5 folds, where
4 folds serve as training set and the remaining 1 fold serves
as testing set. Experimental results indicate that the proposed
model outperforms state-of-the-art methods. However, the
performance on AxNu is not satisfying, and we find that most
False Negatives of AxNu are wrongly classified as GrNu.
Besides, MEON achieves the best performance on M-Blur.

Quality Grade Prediction: Table 2 shows the quality
grade prediction performance of different methods, where
“Model Size” represents the amount of parameters to be
learned in the network. Considering that SSIM is a tradition-
al full-reference quality metric, here we first adopt a logistic
regression function S̄ = β1( 1

2 −
1

1+exp(β2(S−β3))
)+β4S+β5

to map the original quality grade S to S̄, as suggested by
video quality experts group (VQEG) [19–23]. Besides,
βλ(λ ∈ {1, 2, ..., 5}) are free parameters to be determined
during the curve fitting process. Then we use the mapped
quality score S̄ to compute 3 popular evaluation criteria in-
cluding Pearson liner correlation coefficient (PLCC), Spear-
man’s rank order correlation coefficient (SRCC), and Root
mean squared error (RMSE) for fair comparison. The pro-
posed method achieves a top ranked performance at the cost
of a few more trainable parameters.

3https://github.com/CZHQuality/BQAfor2DSymbols

Table 3. Accuracy of dividing 2D symbols into two categories, i.e. decodable and
undecodable. The 1st and 2nd rows represent the decoding time of libdmtx when dealing
with 2D symbols with the best (grade-4) and the worst (grade-0) quality grades.

Accuracy FAR FRR Time Cost
libdmtx [6]: quality = 4 – – – ≈ 28 ms
libdmtx [6]: quality = 0 – – – ≥ 500 ms
Chen’s method [12] 0.818 0.088 0.094 ≈ 5.5 ms
Proposed 0.944 0.024 0.032 ≈3.33 ms

4. APPLICATION
Preprocessing Method Recommendation: The proposed
method provides a rapid and automatical preprocessing meth-
ods selection strategy. As mentioned in motivation part,
2D symbols with different distortions require appropriate
preprocessing methods. Empirically speaking, smoothing
filter handles S-Noise well, sharpening filter handles M-Blur
well, morphological operations perform well on O-Print and
U-Print, perspective transform is valid to GrNu, and grid-
correction handles AxNu well. As shown in Fig.2, the output
of sub-network I is a C1-dimensional probability vector p(k),
in which the maximal probability indicates the predicted dis-
tortion type. We rank the preprocessing methods according
to the numerical values within p(k), in order to save prepro-
cessing time compared to traditional exhaustive approach [3].

Time Limit Adjustment: Inspired by Chen’s work [12],
we use the proposed network to divide 2D symbols into two
categories (simply change C2 from 5 to 2, and retrain the net-
work), i.e. decodable (quality grade > 0) and undecodable
(quality grade = 0). Table 3 shows the classification results
and time cost (for single image) of different methods. The
time cost is measured on a desktop computer with Intel Core
I7 CPU, NVIDIA GTX 690 GPU, and Python 2.7 environ-
ment. For symbols with very bad quality, decoding software
like libdmtx will not stop exhaustive search until time limit
(500 ms) has run out, and this is expensive in terms of time.
Hence, for saving time, we use the proposed model to esti-
mate the quality grade in advance, and set a lower decoding
time limit for symbols predicted as undecodable.

5. CONCLUSION
We propose a blind quality measure for industrial 2D symbols
using a shallow CNN architecture, which divides the quality
measure problem into two subtasks, i.e. distortion type clas-
sification and quality grade estimation. The proposed method
achieves the top ranked performances on two subtasks, and
is robust to different rotation angles. Besides, the proposed
model can be applied to two practical applications for improv-
ing decoding efficiency at the cost of low extra time spent. We
share the proposed database and code with the community to
facilitate next research.
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